
#2 Even-odd Sudoku - Formulation
Author: Luiz Suzana
July, 2021

This is the MIP formulation of the puzzle. Statement and solution implementation of all puzzles are available from
the main page of the Fun Puzzles (https://mip-master.github.io/puzzles/) project, which is maintained by Mip
Master (https://mipmaster.org/).

The goal is to fill a 9x9 grid with digits from 1 to 9 in a way that the following conditions are satisfied:

Usual rules of sudoku, i.e., in each row, column and bold region, all the digits from 1 to 9 must appear, or
equivalently, there must be no repetition of any digit in each row, column and bold region;
The given initial digits on the cells must be preserved at the final solution;
Some specific cells must have an even/odd digit (see Fun Puzzles (https://mip-master.github.io/puzzles/)
project for the puzzle statement).

Input Data
We start by defining the set of indices, which corresponds simultaneously to the available digits, and to the
indices of rows and columns:

I = {1, 2, 3, 4, 5, 6, 7, 8, 9}

We also need to describe the cells where we are given: an even digit; an odd digit; an initial digit:

Even cells:
EC = {(2, 1), (3, 2), (3, 5), (2, 6), (2, 7), (2, 8), (3, 8), (4, 8), (5, 7), (8, 7),
(8, 9)}

Odd cells:
OC = {(1, 2), (2, 3), (4, 4), (5, 3), (6, 2), (6, 6), (7, 2), (8, 2), (8, 3), (8, 4),
(7, 5), (7, 8), (9, 8)}

Given digits:
GD = {(1, 6): 4, (1, 7): 6, (1, 9): 9, (2, 5): 5, (3, 4): 1, (3, 9): 7, (4, 3): 4, (4,
9): 8, (5, 2): 2, (5, 8): 9, (6, 1): 1, (6, 7): 3, (7, 1): 9, (7, 6): 8, (8, 5): 6, (9,
1): 8, (9, 3): 5, (9, 4): 7}

Finally, we describe the bold regions, as a python dictionary:

Bold regions:

https://mip-master.github.io/puzzles/
https://mipmaster.org/
https://mip-master.github.io/puzzles/

BR = {
1: [(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)],
2: [(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)],
3: [(1, 7), (1, 8), (1, 9), (2, 7), (2, 8), (2, 9), (3, 7), (3, 8), (3, 9)],
4: [(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2), (6, 3)],
5: [(4, 4), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)],
6: [(4, 7), (4, 8), (4, 9), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9)],
7: [(7, 1), (7, 2), (7, 3), (8, 1), (8, 2), (8, 3), (9, 1), (9, 2), (9, 3)],
8: [(7, 4), (7, 5), (7, 6), (8, 4), (8, 5), (8, 6), (9, 4), (9, 5), (9, 6)],
9: [(7, 7), (7, 8), (7, 9), (8, 7), (8, 8), (8, 9), (9, 7), (9, 8), (9, 9)]}

Decision Variables
We now define the decision variables. The first attempt could be to define a set of variables
for which correspond to the digit that must enter cell . Although this formulation is possible, it gets
harder to establish the constraints later (why? Try yourself).

Alternatively, we propose the following decision variables:

 for , where equals when digit enters cell , and otherwise.

At a first glance, this may seems an over-complicated formulation, but it will save us a lot of effort while setting
the constraints. Note that in this way, we have a bigger number of variables, but they turn out to be binaries!

Constraints
With the rules of the puzzle in mind and with the decision variables defined, we now establish the constraints
precisely:

Each cell must have exactly one digit:

Here, a pair corresponds to one cell in the 9x9 grid, and since the variables are binaries, the sum over
 above ensure that one, and exactly one, of the is set to . Therefore, the unique for which

 represents the digit that enters cell , which guarantees the desired constraint. There would
not be such constraint if we had defined the decision variables in the other way.

Digits can't repeat in each row:

The index corresponds to each row on the grid, while stands for each available digit. Then, given a row
and a digit , the sum over guarantees the existence of one, and exactly one, such that , i.e.,
only one for which the value enters .

Digits can't repeat in each column:

The index represents each column, and each available digit. It is similar to the previous constraint.

∈ {1, … , 9}xij

i, j ∈ I (i, j)

xijk i, j, k ∈ I xijk 1 k (i, j) 0

= 1 ∀i, j ∈ I.∑
k

xijk

(i, j)
k xijk 1 k

= 1xijk (i, j)

= 1 ∀i, k ∈ I.∑
j

xijk

i k i

k j j = 1xijk

j k (i, j)

= 1 ∀j, k ∈ I.∑
i

xijk

j k

Digits can't repeat in each bold region:

Now, for a given bold region and a given digit , the sum over above ensures that for
exactly one cell in the region we will have , i.e., digit in cell .

Some cells must have the given digits:

Each is precisely one cell for which an initial digit is given by the puzzle statement.
 represents the given value in cell (see Input Data section). Therefore, we enforce cell

 to have the value , i.e., set .

Some cells must have even digits:

Every represents a cell that must have an even digit, and the equality above ensures that there
is exactly one even value for such that , i.e., such that enters cell .

Some cells must have odd digits:

Every represents a cell that must have an odd digit, and the equality above ensures that there
is exactly one odd value for such that , i.e., such that enters cell .

 must be binary:

Objective Function
There is no objective to maximize or minimize in this problem. We only need to find one feasible solution (which
turns out to be unique in this case). But there is no problem if we define an objective function, and it can be
anything. For instance, set

Final Formulation

= 1 ∀b ∈ BR, ∀k ∈ I.∑
(i,j)∈b

xijk

b ∈ BR k (i, j) ∈ b

(i, j) b = 1xijk k (i, j)

= 1, ∀(i, j) ∈ GD and k = GD[i, j].xijk

(i, j) ∈ GD

k = GD[i, j] (i, j)
(i, j) k = 1xijk

= 1 ∀(i, j) ∈ EC.∑
k even

xijk

(i, j) ∈ EC

k = 1xijk k (i, j)

= 1 ∀(i, j) ∈ OC.∑
k odd

xijk

(i, j) ∈ OC

k = 1xijk k (i, j)

xijk

∈ {0, 1} ∀i, j, k ∈ I.xijk

max .x111

max

s.t.

x111

= 1,∑
k

xijk

= 1,∑
j

xijk

= 1,∑
i

xijk

= 1,∑
(i,j)∈b

xijk

= 1,xijk

= 1,∑
k even

xijk

= 1,∑
k odd

xijk

∀i, j ∈ I

∀i, k ∈ I

∀j, k ∈ I

∀b ∈ BR, ∀k ∈ I

∀(i, j) ∈ GD, k = GD[i, j]

∀(i, j) ∈ EC

∀(i, j) ∈ OC

